2D-CellVision

NUANCE, a giant protein connecting the nucleus and actin cytoskeleton

NUANCE (NUcleus and ActiN Connecting Element) was identified as a novel protein with an a-actinin-like actinbinding domain. A human 21.8 kb cDNA of NUANCE spreads over 373 kb on chromosome 14q22.1-q22.3. The cDNA sequence predicts a 796 kDa protein with an Nterminal actin-binding domain, a central coiled-coil rod domain and a predicted C-terminal transmembrane domain. High levels of NUANCE mRNA were detected in the kidney, liver, stomach, placenta, spleen, lymphatic nodes and peripheral blood lymphocytes. At the subcellular level NUANCE is present predominantly at the outer nuclear membrane and in the nucleoplasm. Domain analysis shows that the actin-binding domain binds to Factin in vitro and colocalizes with the actin cytoskeleton in vivo as a GFP-fusion protein. The C-terminal transmembrane domain is responsible for the targeting the nuclear envelope. Thus, NUANCE is the first a-actininrelated protein that has the potential to link the microfilament system with the nucleus.

Lamin A/C–dependent Localization of Nesprin-2, a Giant Scaffolder at the Nuclear Envelope

The vertebrate proteins Nesprin-1 and Nesprin-2 (also referred to as Enaptin and NUANCE) together with ANC-1 of Caenorhabditis elegans and MSP-300 of Drosophila melanogaster belong to a novel family of a-actinin type actin-binding proteins residing at the nuclear membrane. Using biochemical techniques, we demonstrate that Nesprin-2 binds directly to emerin and the C-terminal common region of lamin A/C. Selective disruption of the lamin A/C network in COS7 cells, using a dominant negative lamin B mutant, resulted in the redistribution of Nesprin-2. Furthermore, using lamin A/C knockout fibroblasts we show that lamin A/C is necessary for the nuclear envelope localization of Nesprin-2. In normal skin where lamin A/C is differentially expressed, strong Nesprin-2 expression was found in all epidermal layers, including the basal layer where only lamin C is present. This indicates that lamin C is sufficient for proper Nesprin-2 localization at the nuclear envelope. Expression of dominant negative Nesprin-2 constructs and knockdown studies in COS7 cells revealed that the presence of Nesprin-2 at the nuclear envelope is necessary for the proper localization of emerin. Our data imply a scaffolding function of Nesprin-2 at the nuclear membrane and suggest a potential involvement of this multi-isomeric protein in human disease.

The inner nuclear membrane protein Sun1 mediates the anchorage of Nesprin-2 to the nuclear envelope

Nesprins form a novel class of nuclear envelope-anchored spectrin-repeat proteins. We show that a direct association of their highly conserved C-terminal luminal domain with the inner nuclear membrane protein Sun1 mediates their nuclear envelope localisation. In Nesprin-1 and Nesprin-2 the conserved C-terminal amino acids PPPX are essential for the interaction with a C-terminal region in Sun1. In fact, Sun1 is required for the proper nuclear envelope localisation of Nesprin-2 as shown using dominant-negative mutants and by knockdown of Sun1 expression. Sun1 itself does not require functional A-type lamins for its localisation at the inner nuclear membrane in mammalian cells. Our findings propose a conserved nuclear anchorage mechanism between Caenorhabditis elegans and mammals and suggest a model in which Sun1 serves as a ‘structural bridge’ connecting the nuclear interior with the actin cytoskeleton.
Localization of NUANCE
Intracellular localization of NUANCE in COS7 cells
NUANCE (green) is localized at the nuclear membrane, F-actin (red).